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This work explores the effect of using updated robust reliability measures in the context of
stochastic structural dynamical systems. A Bayesian probabilistic methodology for model
updating is first implemented for the purpose of updating the structural model using
dynamic data. The updated distribution of the system model parameters is then used to
implement a strategy for updating the system reliability. The effect of the updated infor-
mation on the robust performance and design of dynamical systems under stochastic exci-
tation and modeling uncertainty is illustrated by several example problems.
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1. Introduction

During operation conditions structural systems may deteriorate for a number of reasons, such as fatigue, corrosion, dam-
age induced in structural elements by strong wind loads or earthquakes, etc. These conditions may lead to significant reduc-
tion of the structural reliability. Therefore, the re-assessment of the reliability of a structure after it has been built by
monitoring the dynamic response is of paramount importance [1–4]. The updated reliability may be used to identify poten-
tially unsafe structures, to schedule repairs, maintenances or inspection intervals, or to design retrofitting or control strat-
egies [5–9]. For a proper assessment of the updated reliability all uncertainties affecting the structural safety should be
considered. This leads to the concept of robust reliability defined in [10], and used in this work, to take into account during
reliability estimation the structural modeling uncertainties in addition to the uncertain excitation that a structure will expe-
rience during its lifetime. Using a probabilistic description of these uncertainties the concept of updated robust reliability can
be defined in terms of an integral over a specified set of possible models of the conditional reliability for a given model
weighted by the probability of that model [11,12].

In this work a strategy for updating robust structural reliability using dynamic data is first considered. For this purpose, a
Bayesian probabilistic framework for model updating is integrated with advanced simulation tools [13]. The model identi-
fication technique provides more accurate representations of the uncertainties associated with the structural modeling be-
cause it is based on both measured data and prior engineering information. In particular, a multi-level Markov chain Monte
Carlo algorithm is adopted here [14]. In this framework, revised information about the uncertainties in the system param-
eters is obtained, which is expressed by posterior probability density functions. It is noted that in this context probability is
not interpreted in the usual frequentist sense, but it is based on the idea of reasonable expectation, that is, probability is
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interpreted as a measure of plausibility of the hypothesis. In this manner, it is possible to extend the application of proba-
bility theory to problems where the frequentist interpretation may not be directly intuitive. Using this interpretation, Bayes-
ian approach makes it possible to deal with usual situations in structural engineering where a large amount of experimental
data is not available, and it provides a means for making decisions based on limited and incomplete information [15]. Using
the updated characterization of the system model, a strategy is implemented for computing the reliability of structural sys-
tems under future excitations characterized by means of stochastic processes. In this context, the probability that design
conditions are satisfied within a particular reference period is used as reliability measure. Such measure is referred as the
first excursion probability and quantifies the plausibility of the occurrence of unacceptable behavior of the structural system
[16–18]. The strategy is based on subset simulation and it uses a Markov chain Monte Carlo technique based on the Metrop-
olis algorithm for generating conditional samples [19,20].

Using the proposed strategy for updating the robust structural reliability, it is the main objective of this contribution to
investigate the effect of the updated information on the robust performance and design of dynamical systems under stochas-
tic excitation and modeling uncertainty. The proposed study is illustrated by considering several problems involving struc-
ture-related applications. The structure of the paper is as follows. Section 2 reviews some of the basic ideas of Bayesian
updating using dynamic data. The reliability assessment of structural systems under stochastic excitation is examined in
Section 3. The proposed implementation for updating the reliability estimation is introduced in Section 4. The effect of using
updated reliability measures is illustrated in Section 5 by means of three application problems. The paper closes with some
conclusions and final remarks.
2. Bayesian updating using dynamic data

2.1. Problem definition

In this section a Bayesian approach for model updating using input–output measurements is briefly reviewed. The meth-
odology is based on a probabilistic system identification approach introduced in [21,22]. The approach allows for the explicit
treatment of the uncertainties arising from both measurement noise and modeling errors by providing a probabilistic
description of the structural models and the prediction error for each structural model from a prescribed class of models.
It also allows for the explicit treatment of non-uniqueness arising in the model updating inverse problem. Let M be the as-
sumed probabilistic model class for a target system, parameterized by the vector of uncertain model parameters h 2 H � Rnp ,
and D be the measured dynamic data from the system. The objective of Bayesian model updating is to define the posterior
probability density function of h conditioned on D; pðhjM;DÞ, as (Bayes’ Theorem) [13,23]
pðhjM; DÞ ¼ pðDjM; hÞ pðhjMÞ
pðDjMÞ ; ð1Þ
where pðhjMÞ is the initial (prior) probability density function of h; pðDjM; hÞ is the likelihood function, and pðDjMÞ is the
evidence of M. The prior probability distribution reflects the relative plausibility of each model in the model class M before
utilizing the data D. The term pðDjM; hÞ gives the probability of obtaining the data D based on the model M specified by the
parameters h. Finally, the normalizing constant pðDjMÞ, which does not affect the shape of the posterior distribution, corre-
sponds to the evidence for the model class M given by the data D, and expressed as
pðDjMÞ ¼
Z

H
pðDjM; hÞ pðhjMÞdh: ð2Þ
As previously pointed out only one probabilistic model class M for a target system, defined by the parameters h, is con-
sidered in the present formulation. Therefore the problem of model class selection, among candidate probabilistic model
classes, is not taken into account here [11,14].

2.2. Formulation of likelihood function

The likelihood function gives a measure of the agreement between the system response and the corresponding structural
model output. This measure of the data fit of each model in the model class M, i.e., the value of the likelihood function for
each parameter vector h, is given by the probability model established for the system output. This can be constructed by
choosing a probability model for the prediction error, which is the difference between the system output that will be mea-
sured and the one predicted by the structural model for a specified value of the parameter vector h. Let xðtn; hÞ be the model
response vector at N degrees of freedom at time tn ¼ nDt; n ¼ 1; . . . ;Nt , where Dt denotes the sampling time step and Nt is the
number of available data. The input for calculating the model response is assumed to be prescribed. Because of measurement
noise and modeling error (prediction error), the measured response yðtnÞ at No; ðNo 6 NÞ observed degrees of freedom of the
structural model will differ from the model response Boxðtn; hÞ. This last term corresponds to the measured degrees of free-
dom where Bo denotes an No � N observation matrix. This matrix selects only those degrees of freedom where measure-
ments are made. The probability model class for the prediction error eðtn; hÞ ¼ yðtnÞ � Boxðtn; hÞ considered in the present
formulation is based on the maximum entropy principle which yields a multi-dimensional Gaussian distribution with zero
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mean and covariance matrix Re [10,24,25]. This distribution arises because it gives the largest amount of uncertainty among
all probability distributions for a real variable whose first two moments are specified [26]. In particular, the prediction error
eðtn; hÞ is modeled as a discrete zero mean Gaussian white noise process, that is,
E½eðtn; hÞ� ¼ 0; E½eðtn; hÞeðtm; hÞT � ¼ Re dnm; ð3Þ
where E½�� denotes expectation, dnm denotes the kronecker delta function, and Re denotes the No � No covariance matrix
which is assumed to have the form Re ¼ r2

e Io, where Io is the identity matrix of dimension No � No. This assumption implies
equal variances and stochastic independence of the prediction errors for different channels of measurements. Of course,
different prediction error model classes can be used as well. Using the above probability model for the prediction error it
can be shown that the likelihood function pðDjM; hÞ can be expressed in terms of a measure-of-fit function JðhjM;DÞ
between the measured response and the model response at the measured degrees of freedom [10,21,22,25]. Such function
is given by
JðhjM;DÞ ¼ 1
NtNo

XNt

n¼1

kyðtnÞ � Boxðtn; hÞk2 ð4Þ
where k � k denotes the Euclidian norm of a vector.

2.3. Model parameters

For a large number of available data (NtN0 is large) it has been found that the most probable model parameters ĥ are ob-
tained by minimizing JðhjM;DÞ over all parameters in H that it depends on [21]. Recall that the parameter vector h for iden-
tification includes parameters such as structural parameters and the prediction error variance. Under the assumption of a
large amount of data the posterior probability density function pðhjM;DÞ is in general concentrated in the neighborhood
of a lower dimensional manifold in the parameter space. If the dimension is zero there may be a unique optimal parameter
(global identifiable case), or a discrete set of optimal parameters (local identifiable case) [27–29]. On the other hand, if the
dimension is larger than zero the number of optimal solutions may be either infinity (strictly unidentifiable case) or it may
be finite but the decay of the distribution in the vicinity of the various optimal points may not be rapid enough in all direc-
tions (almost unidentifiable case) [30,31]. In the latter case the vicinities of important probabilities corresponding to differ-
ent optimal points may either overlap or they may extend over larger regions. In this case the manifold in the neighborhood
of which all points with significant probabilities are contained is of dimension larger than zero extending along the direc-
tions of the parameter space where the probability density function decays slowly. All points along the manifold correspond
to structural models that have almost the same response at the measured degrees of freedom to within the accuracy spec-
ified by the optimal prediction variance r̂2 ¼ JðĥjM:DÞ [10,21].

2.4. Simulation-based methods

As indicated before one of the difficulties of model updating is that the problem is potentially ill-posed, that is, there may
be more than one optimal solution. The problem becomes even more challenging when only some degrees of freedom of the
model are measured and when modeling errors are explicitly considered. Bayesian model updating approaches reported in
[21,22] have been successfully used in resolving the aforementioned difficulties when the posterior probability density func-
tion of the model parameters is very peaked (identifiable cases). In those cases asymptotic approximations of the Bayesian
predictive integrals can be used with sufficient accuracy [10,32]. However, when the probability density function is not very
peaked, i.e., when the amount of data is limited or the probability density function has a flat region, the validity of the
asymptotic approximations is doubtful. To avoid the above difficulties a simulation-based Bayesian model updating tech-
nique is adopted here. In general, simulation-based methods can handle more general cases than asymptotic approximation
approaches [11]. In particular, an efficient method called transitional Markov chain Monte Carlo is implemented in this work
[14]. Validation calculations have shown the effectiveness of this approach in a series of practical Bayesian model updating
problems [14,33,34]. The method can be applied to a wide range of cases including high-dimensional posterior probability
density functions, multimodal distributions, peaked probability density functions, and probability density functions with flat
regions.

2.5. Transitional Markov chain Monte Carlo method

For completeness the basic ideas of the transitional Markov chain Monte Carlo method are presented in this section. The
method iteratively proceeds from the prior to the posterior distribution. It starts with the generation of samples from the
prior distribution in order to populate the space in which also the most probable region of the posterior distribution lies.
For this purpose a number of intermediate distributions are defined as
pjðhjM;DÞ ¼ c pðhjMÞpðDjM; hÞaj j ¼ 0;1; . . . ;m; 0 ¼ a0 < a1 < � � � < am ¼ 1; ð5Þ
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where the index j denotes the step number, and c is a normalizing constant. The exponent aj can be interpreted as the per-
centage of the total information provided by the dynamic data which is incorporated in the jth iteration of the updating pro-
cedure. The first step (j ¼ 0) corresponds to the prior distribution and in the last stage (j ¼ m) the samples are generated from
the posterior distribution. The idea is to choose the values of exponents aj in such a way that the change of the shape be-
tween two adjacent intermediate distributions be small. This small change of the shape makes it possible to efficiently obtain
samples from pjþ1ðhjM;DÞ based on the samples from pjðhjM;DÞ. The samples are obtained by generating Markov chains
where the lead samples are selected from the distribution pjðhjM;DÞ by computing their plausibility weights with respect
to pjþ1ðhjM;DÞ which are given by
wðhk
j Þ ¼

pðhk
j jMÞ pðDjM; hk

j Þ
ajþ1

pðhk
j jMÞ pðDjM; hk

j Þ
aj
¼ pðDjM; hk

j Þ
ajþ1�aj

; k ¼ 0;1; . . . ;Nj; ð6Þ
where the upper index k ¼ 1; . . . ;Nj denotes the sample number in the jth iteration step (hk
j ; k ¼ 1; . . . ;Nj). Each sample of the

current stage is generating using the Metropolis–Hastings algorithm [19,20]. The starting point of the Markov chain is a sam-
ple from the previous step that is selected according to the probability equal to its normalized weight
�wðhk
j Þ ¼

wðhk
j ÞPNj

l¼1wðhl
jÞ
; k ¼ 1; . . . ;Nj: ð7Þ
The proposal probability density function for the Metropolis–Hastings algorithm is a Gaussian distribution centered at
the preceding sample of the chain and with a covariance matrix Rj equal to the scaled version of the estimated covariance
matrix of the current intermediate distribution, that is
Rj ¼ b2
XNj

l¼1

�wðhl
jÞ ðh

l
j � �hjÞðhl

j � �hjÞ
T

h i
; �hj ¼

XNj

l¼1

�wðhl
jÞh

l
j; ð8Þ
where b2 is a scaling parameter that is used to control the rejection rate of the Metropolis–Hastings algorithm and to smooth
the Markov chain Monte Carlo jumps. As previously pointed out, one of the key aspects of the method is the smooth tran-
sition between two adjacent intermediate distributions. In this regard, the degree of uniformity of the plausibility weights
wðhk

j Þ; k ¼ 1; . . . ;Nj is a good indicator of how close pjþ1ðhjM;DÞ is to pjðhjM;DÞ. Thus, to ensure the smooth transition between
iterations the parameter aj is chosen so that the coefficient of variation of the plausibility weights is smaller or equal to a
prescribed threshold, that is rwjjEwj 6 c, where
r2
wj ¼

1
Nj � 1

XNj

l¼1

½pðDjM; hl
jÞ

ajþ1�aj � Ewj�
2
; Ewj ¼

1
Nj

XNj

l¼1

pðDjM; hl
jÞ

ajþ1�aj
: ð9Þ
The previous steps are repeated until aj ¼ 1 is reached (samples generated from the posterior distribution). At the last
stage the samples (hk

m; k ¼ 1; . . . ;Nm) are asymptotically distributed as pðhjM;DÞ. For a detailed implementation of the tran-
sitional Markov chain Monte Carlo method the reader is referred to [14,35].

3. System reliability

3.1. Reliability measure

The updating procedure presented in the previous section is now used to update the system reliability. As previously
pointed out, the focus is in stochastic structural dynamical systems where the reliability is defined in terms of a first
excursion probability, that is the probability that design conditions are satisfied within a particular reference period. In this
context, a failure domain F can be defined as
FðMÞ ¼ fqT ¼< zT ; hT > jdðqjMÞ > 1g ð10Þ
where z represents the vector of random variables that specify the stochastic excitation, q denotes the augmented vector of
system parameters (loading and model parameters), and
dðqjMÞ ¼maxj¼1;...;nj
maxt2½0;T�

jrjðt; z; hÞj
r�j

; ð11Þ
indicates the normalized demand function, where ½0; T� is the time interval of analysis, rjðt; z; hÞ; j ¼ 1; . . . ;nj are the response
functions associated with the failure event that defines the failure domain F, and r�j is the corresponding critical threshold
level. The response functions rjðt; z; hÞ; j ¼ 1; . . . ;nj are obtained from the solution of the equation of motion that character-
izes the structural model.
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3.2. Nominal and robust failure probability

The probability of the failure event associated with the failure domain F predicted using known model parameters h is
referred as the nominal or conditional failure probability, and it can be expressed as
PðFjM; hÞ ¼
Z

Xz

PFðz; hjMÞ f ðzÞ dz; ð12Þ
where PFðz; hjMÞ is the indicator function, that is, PFðz; hjMÞ ¼ 1 if ðz; hjMÞ 2 F and PFðz; hjMÞ ¼ 0 otherwise. The vector of
random variables that specify the excitation is characterized by a probability density function f ðzÞ. This function indicates
the relative plausibility of the possible values of the random variables z 2 Xz � RnT . In what follows it is assumed without
much loss of generality that the components of z are independent, that is, f ðzÞ ¼ PNT

j¼1fjðzjÞ where for every j; fj is a one-
dimensional probability density function for zj. It is noted that this is the case, for example, of stochastic excitations modeled
in terms of Gaussian processes. This type of processes are important since allows to describe a wide range of cases such as
filtered white noise processes, colored excitations, non-stationary excitations, etc. [36]. On the other hand, to estimate the
robust failure probability that takes into account that the system model parameters are uncertain, a weighted integral of
conditional failure probabilities over the whole parameter space must be evaluated. The weighting function in the integral
is the probability density function of the possible models of the system. In the case where no dynamic data is available, the
initial or prior probability density function pðhjMÞ of the model parameters is involved. Thus the robust failure probability
can be written as
PðFjMÞ ¼
Z

H
PðFjM; hÞpðhjMÞdh ð13Þ
The dependence of the robust failure probability on the model class M is clear from the above definition. This integral is
difficult to evaluate unless only a small number of model parameters h are involved, so that numerical integration can be
performed. Alternatively, Eq. (13) can be re-written in terms of the indicator function by using the characterization of the
conditional failure probability in Eq. (12) as
PðFjMÞ ¼
Z

H

Z
Xz

PFðz; hjMÞ f ðzÞ pðhjMÞdzdh: ð14Þ
The probability integrals in Eqs. (12) and (14), which have the same structure, usually involve a large number of random
variables (hundreds or thousands) in the context of dynamical systems under stochastic excitation. Therefore, these integrals
represent high-dimensional reliability problems. On the other hand, the normalized demand function that characterizes the
failure domain XF is usually not known explicitly in terms of the random variables, but must be computed point wise by
applying suitable deterministic numerical techniques such as finite element analysis. The previous difficulties for estimating
the nominal and robust failure probabilities favor the application of advanced Monte Carlo strategies as fundamental ap-
proaches to cope with the probability integrals [37–39]. In particular a generally applicable method, called subset simula-
tion, is implemented in the present formulation [40,41].

3.2.1. Reliability estimation
In the context of subset simulation, the failure probabilities are expressed as a product of conditional probabilities of

some chosen intermediate failure domains, the evaluation of which only requires simulation of more frequent events. For
example, the robust failure probability PðFjMÞ is expressed as the product
PðFjMÞ ¼ P½F1ðMÞ�
YmF�1

k¼1

P½Fkþ1ðMÞjFkðMÞ�; ð15Þ
where FmF ðMÞ ¼ FðMÞ is the target failure domain, and FmF ðMÞ � FmF�1ðMÞ . . . � F1ðMÞ is a nested sequence of failure do-
mains. It is seen that, even if PðFjMÞ is small, by choosing mF and FkðMÞ; k ¼ 1; . . . ;mF � 1 appropriately, the conditional prob-
abilities can still be made sufficiently large, and therefore they can be evaluated efficiently by simulation because the failure
events are more frequent. Conditional failure probabilities equal to 0.1 are considered in the present formulation. Details of
this simulation procedure from the theoretical and numerical viewpoint can be found in [40].

3.3. Updated robust failure probability

The updated robust failure probability is evaluated as an integral of the conditional failure probabilities weighted by the
posterior probability density function pðhjM;DÞ, that is,
PðFjM;DÞ ¼
Z

H
PðFjM; hÞpðhjM;DÞdh: ð16Þ
This integral, which is similar to the probability integral corresponding to the robust failure probability in Eq. (13), takes
into account the information from the data through the use of the posterior probability density function of the model param-
eters. The integral is difficult to evaluate unless only a small number of model parameters h are involved, as previously
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pointed out. Otherwise, more computational efficient approximations must be used. For example, when the posterior distri-
bution pðhjM;DÞ is negligible except on a low-dimensional manifold in the parameter space h efficient asymptotic approx-
imations have been proposed [10,21]. In those cases the Eq. (16) is estimated as a weighted sum of conditional probabilities
of failure corresponding to a set of points on the manifold. This requires the characterization of the low-dimensional man-
ifold by a discrete set of points non-uniformly distributed along the manifold. Note that for identifiable cases the manifold
consists of isolated points which correspond to the optimal value of the model parameters. Although the approach based on
asymptotic approximations has proved to be quite effective in a number of applications, it has certain limitations related to
accuracy, especially when the problem is unidentifiable, or to computational inefficiency in searching for more than one glo-
bal optimal point in the parameter space. Thus, a more general approach is considered here.

It is noted that substituting the expression of PðFjM; hÞ from Eq. (12) into the integral, the updated robust failure
probability can be re-written as a multidimensional integral over the space of the augmented parameter space of loading
and system parameters as follows
PðFjM;DÞ ¼
Z

H

Z
Xz

PFðz; hjMÞ f ðzÞ pðhjM;DÞ dz dh: ð17Þ
This integral has the same form of the probability integral in Eq. (14), where the uncertain parameters involved in the
problem are given by the vectors h and z. However, the updated probability density function pðhjM;DÞ is not known explic-
itly. One alternative is to approximate the probability density of the parameters, for example, by means of multidimensional
Gaussian kernels and then use simulation techniques such as direct subset simulation. Another option, which is considered
in this work, is to apply a methodology that uses directly the set of samples generated at the last stage of the transitional
Markov chain Monte Carlo method.

4. Updated robust reliability estimation

4.1. Direct approach

Using the set of samples generated at the last stage of the transitional Markov chain Monte Carlo method,
hl

m; l ¼ 1; . . . ;Nm, the updated robust failure probability can be estimated directly as
PðFjM;DÞ ¼
Z

H
PðFjM; hÞpðhjM;DÞdh ¼ EðPðFjM; hÞÞ � 1

Nm

XNm

l¼1

PðFjM; hl
mÞ; ð18Þ
according to the law of large number. Note that this estimate is an asymptotically unbiased estimator of EðPðFjM; hÞÞ when
the number of samples is large, because fhl

m; l ¼ 1; . . . ;Nmg are asymptotically distributed as pðhjM;DÞ. While the previous
estimation of the updated failure probability is direct, it may be quite involved from the numerical viewpoint in some cases.
For example, for unidentifiable cases the estimation of a large number of conditional failure probabilities may be required. To
cope with this difficulty an alternative implementation based on subset simulation is proposed in the following section.

4.2. Proposed strategy

4.2.1. Unconditional samples
As previously pointed out the basic idea of subset simulation is to express the failure probability PðFjM;DÞ as a product of

a series of conditional probabilities. The updated robust failure probability is expressed as
PðFjM;DÞ ¼ P½F1ðM;DÞ�
YmF�1

k¼1

P½Fkþ1ðM;DÞjFkðM;DÞ�; ð19Þ
where FmF ðM;DÞ � FmF�1ðM;DÞ . . . � F1ðM;DÞ is a nested sequence of failure domains. Note that the updated failure domains
(FkðM;DÞ; k ¼ 1; . . . ;mF) differ from the failure domains prior to data (FkðMÞ; k ¼ 1; . . . ;mF). The probability of the first failure
event, associated with the failure domain F1, can be readily estimated by Monte Carlo simulation as
P½F1ðM;DÞ� � 1
N

XN

l¼1

PF1 ðqlð0ÞjMÞ; ð20Þ
where qlð0ÞT ¼< zlð0ÞT ; hlð0ÞT > denotes the samples corresponding to conditional level 0 (unconditional) of the augmented
vector of uncertain parameters for the excitation z and the model parameters h. The quantities zlð0Þ; l ¼ 1; . . . ;N are indepen-
dent and identically distributed samples simulated according to the probability density function f ð�Þ. On the other hand, the
samples hlð0Þ; l ¼ 1; . . . ;N are drawn from the set of samples generated at the last stage of the transitional Markov chain
Monte Carlo method with probability
�wðhlÞ ¼ wðhlÞPNm
k¼1wðhkÞ

; ð21Þ
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where the plausibility weight of the sample hk is given by wðhkÞ ¼ pðhkjMÞ pðDjM; hkÞ; k ¼ 1; . . . ;Nm. This sample generation
scheme can be interpreted as an acceptance-rejection algorithm where the proposal density function pð�Þ is defined as a dis-
crete distribution over the samples generated at the last stage of the transitional Markov chain Monte Carlo method. The
value of the distribution function at the sample hk is just the normalized weight of that sample, that is, pðhkÞ ¼ �wðhkÞ.
4.2.2. Conditional samples
In order to estimate the conditional probabilities, a set of conditional samples are required. Following the idea of subset

simulation, there will be a number of samples among qlð0Þ; l ¼ 1; . . . ;N lying in the failure domain F1. Recall that the inter-
mediate failure domains are chosen adaptively using information from simulated samples so that they correspond to some
specific values of conditional failure probabilities. Starting from each of these conditional samples that lie in F1, Markov
chain Monte Carlo simulation is used to generate an additional number of conditional samples making up a total of N con-
ditional samples qlð1Þ; l ¼ 1; . . . ;N at conditional level 1. The conditional samples qlð1Þ; l ¼ 1; . . . ;N are used to estimate the
conditional probability P½F2jF1� as
P½F2ðM;DÞjF1ðM;DÞ� � 1
N

XN

l¼1

PF2 ðqlð1ÞjMÞ: ð22Þ
Again, there will be a number of samples among qlð1Þ; l ¼ 1; . . . ;N lying in the failure domain F2. These samples provide the
seeds for simulating an additional number of conditional samples making up a total of N conditional samples qlð2Þ; l ¼ 1; . . . ;N
at conditional level 2. Repeating this process, it is possible to generate conditional samples of higher conditional levels until
the target failure probability has been reached.
4.2.3. Markov chain samples
The idea is to generate a sequence of samples fq1;q2; . . .g from a given sample q1 by computing qkþ1 from qk (k ¼ 1;2; . . .).

In the context of this formulation it is assumed that the number of uncertain model parameters h is small compared with the
number of random variables z that characterizes the stochastic excitation. In other words, the high-dimensionality of the
reliability problem is due to the representation of the excitation. It is noted that this is the usual case encountered in sto-
chastic dynamical systems. Based on the previous assumptions and the fact that the original Metropolis algorithm does
not work in high-dimensional conditional probability spaces [19,20,40], the modified Metropolis algorithm [40] is used
for generating the candidate states of the z vector, while the original algorithm is implemented for generating the candidate
states of the h vector. Thus, for each component zk

j ; j ¼ 1; . . . ;NT of the vector zk (the first NT components of qkT ¼< zkT
; hkT

>)
a random number nj is simulated from a proposal probability density function pzð�Þ. In the present implementation a uniform
probability density function centered at zk

j is selected. It is well known that the spread of the proposal probability density
function affects the size of the region covered by the Markov chain samples. The optimal choice of the spread is a trade-
off between acceptance rate and correlation. It has been shown that a good candidate for the spread of the distribution is
such that the average acceptance rate of the proposed moves is roughly between 25% and 50% [42,43]. Of course, the optimal
choice of the spread depends on the particular type of problem. Next, the ratio rj ¼ fjðnjÞ=fjðzk

j Þ is computed. The auxiliary
variable ẑk

j is set as ẑk
j ¼ nj with probability minð1; rjÞ and ẑk

j ¼ zk
j with probability 1�minð1; rjÞ. For the model parameters

h a random vector 1 is simulated from a proposal probability density function phð�Þ. This function is selected as a np-dimen-
sional Gaussian distribution centered at the sample hk with covariance matrix Rh given by
Rh ¼ j2
XNm

l¼1

�wðhlÞ½ðhl � �hÞðhl � �hÞT �; ð23Þ
with
�h ¼
XNm

l¼1

�wðhlÞhl; �wðhlÞ ¼ wðhlÞPNm
k¼1wðhkÞ

; ð24Þ
where j2 is a scaling parameter, and hl; l ¼ 1; . . . ;Nm is the set of samples generated at the last stage of the transitional
Markov chain Monte Carlo method. Note that this proposal probability density function is similar to the one used in the
identification process (see Section 2.5). Once the random vector 1 has been simulated the ratio
r ¼ pð1jMÞ pðDjM; 1ÞjpðhkjMÞ PðDjM; hkÞ is computed. The auxiliary vector ĥk is set as ĥk ¼ 1 with probability minð1; rÞ and
ĥk ¼ hk with probability 1�minð1; rÞ. The location of q̂kT ¼< ẑkT

; ĥkT
> is finally checked. If q̂k 2 Fi, where Fi is the corre-

sponding intermediate failure domain, the sample is accepted as the next sample in the Markov chain, that is, qkþ1 ¼ q̂k.
Otherwise the sample is rejected and the current sample is taken as the next sample, i.e., qkþ1 ¼ qk.

Finally, it is noted that even though the conditional samples generated by Markov chain Monte Carlo simulation are
dependent, the samples usually spread in the important regions of the uncertain parameter space. This is because the sam-
ples generated in the first stage of the updating procedure are obtained from direct Monte Carlo simulation for the z vector
and from the last stage of the transitional Markov chain Monte Carlo method for the h vector. In addition, new Markov chain
samples are generated at the tail of each chain during the entire procedure. Consequently, as long as the number of samples
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is sufficiently large, the samples in the last stage are expected to also spread in the important regions of the uncertain param-
eter space. The number of samples used at each conditional level is equal to N ¼ 1000 in the present implementation.

5. Applications

Three application problems are considered in this Section. The objective of the first application is to compare the reliabil-
ity of a system at the initial design stage before any data are collected with the updated robust reliability at the operation
stage during which the test data are collected. In the second application the effect of updated information about the system
parameters on the behavior of a passive control design strategy is examined. Finally, the third application deals with the
reliability of a base-isolated structural system in which changes in the behavior of the isolation system have occurred.

5.1. Application no. 1: updating reliability

5.1.1. Description
Consider the two-story shear frame structure under earthquake loading shown in Fig. 1. The floor masses are

m1 ¼ m2 ¼ 1, and the interstory stiffnesses are k1 ¼ k2 ¼ 1000. The actual damping ratios for the two vibrational modes
are identical and equal to f ¼ f1 ¼ f2 ¼ 0:03. In what follows, it is assumed that this model is representative of the actual
behavior of the frame structure and is referred to as the actual structure. In order to simulate modeling errors a model class
M (a 2DOF two-story linear shear building model class) is introduced. The interstory stiffnesses are parameterized as
k1 ¼ h1

�k1 and k2 ¼ h2
�k2, where h1 and h2 are the stiffness parameters to be identified, and �k1 ¼ �k2 ¼ 1450 are references

values for the interstory stiffness of the first and second floor, respectively. The masses for each model in M is set equal
to the actual system. The nominal model of the structure, which for a real structure would correspond to a pre-test model
used in the design stage is taken from the class M by specifying the values of the model parameters. In this case h1 ¼ h2 ¼ 1:0.
Note that the nominal model is stiffer than the actual system. This is reasonable since the behavior of the actual structure is
expected to be more flexible after deterioration from environmental effects has occurred. The structural model is excited
horizontally by a ground acceleration aðtÞ. The ground acceleration is modeled as a non-stationary filtered white noise
process and it is expressed as
aðtÞ ¼ X2
1w1ðtÞ þ 2n1X1

d
dt
ðw1ðtÞÞ �X2

2w2ðtÞ � 2n2X2
d
dt
ðw2ðtÞÞ; ð25Þ
where the auxiliary functions w1ðtÞ and w2ðtÞ satisfy the second-order differential equations
d2

dt2 ðw1ðtÞÞ þ 2n1X1
d
dt
ðw1ðtÞÞ þX2

1w1ðtÞ ¼ xðtÞ sðtÞ; ð26Þ
Fig. 1. Structural model under ground acceleration (base, first floor and second floor acceleration measurements).
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d2

dt2 ðw2ðtÞÞ þ 2n2X2
d
dt
ðw2ðtÞÞ þX2

2w2ðtÞ ¼ X2
1w1ðtÞ þ 2n1X1

d
dt
ðw1ðtÞÞ; ð27Þ
where xðtÞ denotes white noise, and
sðtÞ ¼ e�0:5t � e�t

maxtðe�0:5t � e�tÞ ; 0 < t < 10 s ð28Þ
is the envelope function. The values X1 ¼ 15:0 rad/s, n1 ¼ 0:6;X2 ¼ 1:0 rad/s, and n2 ¼ 0:9, and white noise intensity
I ¼ 3:5� 10�2 m2/s3 are used in the present application. This model corresponds in frequency content to the so-called Clough
and Penzien filter [44]. The sampling interval and the duration of the excitation are taken as Dt ¼ 0:01 s, and T ¼ 10 s,
respectively. Then, the discrete-time white noise sequence xðtjÞ ¼

ffiffiffiffiffiffiffiffiffiffi
I=Dt

p
zj, where zj; j ¼ 1; . . . ;1001, are independent, iden-

tically distributed standard Gaussian random variables is considered in this case.
5.1.2. Identification process
In what follows it is assumed that the structure is already built and response data are available. Thus, the model of the

structure can be updated. The model updating is based on measurements of the ground acceleration aðtÞ at the base and the
absolute acceleration at the first and second floor of the structure. Simulated measured data are used in this example prob-
lem. To this end, the input ground acceleration time history is given in terms of the N–S component of the 2010 Chilean
earthquake, Concepcion record (shown in Fig. 2). The actual input used for the identification process is the previous record
scaled by a factor equal to 0.25. The measured response is simulated by first calculating the absolute acceleration response of
the actual structure at the first and second floor and then adding 10% rms Gaussian white noise.

The prior probability density functions for the model parameters are independent uniform distributions defined over the
interval ½0:0;1:5�. For identification purposes, the transitional Markov chain Monte Carlo method with
Nj ¼ 1000; j ¼ 1; . . . ;m is implemented (i.e., 1000 samples per stage). The scaling parameters (b and j) involved in Eqs.
(8) and (23) are assumed to be equal 0.04. The samples, in terms of the stiffness parameters, obtained by the transitional
Markov chain Monte Carlo method for some selected durations of the input ground acceleration are plotted in Fig. 3. Three
cases are considered in the figure. Cases I, II, and III correspond to the identification process using 10 s, 20 s and 30 s of data,
respectively. A sampling interval Dt ¼ 0:01 s is used in all cases. It is seen that if the accelerations are measured for a short
period of time (cases I and II), the posterior probability density function of the model parameters is relatively flat along
certain directions in the parameter space (unidentifiable case). As the duration of the measured data increases to 30 s,
the posterior probability density function concentrates in the vicinity of a peak located at ð0:69;0:69Þ (global identifiable
case). The corresponding histograms of the interstory stiffnesses defined by the posterior samples are shown in Figs. 4–6
for cases I, II and III, respectively. In addition, the values of the properties of the nominal system are also shown in the figures.
The spread of the samples for cases I and II (unidentifiable cases) is clear from the histograms. On the other hand it is
observed that the agreement between the actual system (k1 ¼ k2 ¼ 1000) and the model characterized by the posterior
samples is very good for the case III (global identifiable case). Hence, the data used in the identification procedure provides
enough information in order to shift the nominal properties to the target values and to reduce the initial uncertainty in this
case. It is noted that for the global identifiable case the optimal model parameters can be obtained directly by finding the
minimum of the measure-of-fit function given by Eq. (4).
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5.1.3. Failure probability
The system is considered to have failed under earthquake excitation if some stochastic dynamic responses exceed within

a specified time interval ½0; T� certain critical upper bounds. In particular the following failure domain F is considered
FðMÞ ¼ qT ¼< zT ; hT > jdðqjMÞ ¼maxj¼1;2maxt2½0;T�
jrjðt; z; hÞj

r�
> 1

� �
; ð29Þ
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Fig. 5. Posterior histogram of the interstory stiffnesses for the unidentifiable case (Case II).
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Fig. 6. Posterior histogram of the interstory stiffnesses for the identifiable case (Case III).
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where q is the augmented vector of system parameters, rjðt; z; hÞ is the relative displacement between the ðj� 1; jÞth floors, r�

is the critical threshold level and all other terms have been previously defined. The response functions rjð�; �; �Þ; j ¼ 1;2 are
obtained from the solution of the equation of motion that characterizes the model class M. The threshold level r� is calibrated
such that the probability of failure of the nominal system is equal to 10�4. Note that the estimation of the failure probabilities
represents a high-dimensional reliability problem in this case. In fact more than a thousand random variables are involved in
the corresponding multidimensional probability integrals. Table 1 shows the failure probability of the updated and actual
system using an average of 50 independent runs. For the unidentifiable cases the failure probabilities are computed by
the proposed strategy. On the other hand, the probability of failure for the identifiable case is just the failure probability
function evaluated at the most probable value of the model parameters.

It is observed that the updated robust failure probability and the actual failure probability are very similar when the dura-
tion of the data is relatively large (30 s). This result is expected since this case corresponds to the global identifiable case. For
the unidentifiable cases the robust failure probabilities are higher than the actual system due to the uncertainty of the model
class parameters (stiffness parameters). In other words, the parametric uncertainties increase the probability of failure in
relation to the probability of failure obtained from the global identifiable case, which has associated very small parameter
uncertainties. For example it is seen that for Cases I and II there are a number of samples that make the system more flexible



Table 1
Failure probability of the updated and actual system for some selected duration of the identification process.

Cases Failure probability

Updated system Actual system

I: Unidentifiable case 7:5� 10�2 3:9� 10�2

II: Unidentifiable case 4:4� 10�2 3:9� 10�2

III: Identifiable case 3:9� 10�2 3:9� 10�2
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in the first floor (h1 < 0:69), increasing in this manner the failure probability (see Fig. 3). Table 2 shows the corresponding
failure probabilities estimated directly by the samples generated al the last stage of the transitional Markov chain Monte
Carlo method (Eq. 18) for Cases I and II. The estimates are of the same order to the ones obtained by the proposed scheme.
However, the computational cost (CPU time) involved in the evaluation of the estimator EðPðFjM; hÞÞ is about two order of
magnitude greater than the corresponding cost of the proposed implementation.

To investigate the variability of the estimates, the sample COV (coefficient of variation) of the updated failure probability
is computed from 50 independent runs. This information is provided in Table 3, where it is seen that the variability of the
estimates is relatively small for all cases.

It turns out that the rejection rate for the model class parameters during the identification process is quite high (above
80%) for the unidentifiable cases. Under this condition the generation of new samples for the model parameters at the
conditional levels may be avoided. Table 4 shows the impact of rejecting the samples for the model parameters at the con-
ditional levels on the failure probability estimates. The third column of the table corresponds to the case where the samples
generated by the proposal probability density function are always rejected (acceptance option not activated in Table 4). In
this case the same samples h drawn at the first level (unconditional level) are used during the higher levels. It is seen that the
estimates are almost identical. Therefore, the generation of new samples from the proposal probability density function can
be avoided in this case. This in turn increases the efficiency of the proposed implementation since the number of model re-
sponses (dynamic analyses) is reduced during the updating procedure. The samples generated by the two implementations
(acceptance option activated/not-activated) at the last conditional level of the proposed strategy for one particular run are
shown in Fig. 7. It is observed that the distribution of the selected samples in the model parameter space is very similar for
both cases. Consequently, the probability of failure estimates are very similar as indicated before.

The numerical efforts associated with the identification process and the estimation of the updated failure probability (by
means of the proposed method) are summarized in Table 5. The first column of this table indicates the type of analysis or
process performed, while the next three columns show the number of model evaluations (dynamic analyses) required for
cases I, II and III, respectively.

Finally, the effect of monitoring data on the system failure probability is investigated for the global identifiable case.
Recall that this case has associated very small parameter uncertainties. In Table 6 the updated robust failure probability
is compared with the failure probability of different nominal systems. The nominal systems are defined in terms of the value
of the stiffness parameters h1 and h2. The selection of threshold level r�, representing the demand in design, is such that the
nominal failure probability is equal to 10�4. The choice h1 ¼ h2 ¼ 1:0 (first row of the table), which corresponds to case III
reported in Table 1, can be interpreted as the case where significant changes in the stiffnesses of the nominal system have
occurred. On the other hand, the case h1 ¼ h2 ¼ 0:70 (last row of the table) may correspond to small changes in the properties
Table 2
Failure probability of the updated system calculated directly by the samples generated al
the last stage of the transitional Markov chain Monte Carlo method (Eq. 18).

Cases Failure probability

I: Unidentifiable case 8:0� 10�2

II: Unidentifiable case 4:6� 10�2

Table 3
Variability of the updated failure probability estimates

Cases Failure probability

Estimate Coefficient of variation

I: Unidentifiable case 7:5� 10�2 0.11

II: Unidentifiable case 4:4� 10�2 0.11

III: Identifiable case 3:9� 10�2 0.11



Table 4
Probability of failure of the updated system for some selected duration of the identification process.

Cases Failure probability

Acceptance option activated Acceptance option not-activated

I: Unidentifiable case 7:5� 10�2 7:4� 10�2

II: Unidentifiable case 4:4� 10�2 4:3� 10�2
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of the nominal system. Recall that the updated system is defined in terms of h1 ¼ h2 ¼ 0:69. The other cases represent inter-
mediate levels of changes in the properties of the nominal system. Note that the updated probability changes from row to
row because the threshold r� is changed to keep the nominal failure probability at a constant level. It is seen that the updated
failure probability is significantly larger than the nominal failure probability for cases where the level of model error, defined
in terms of the parameters h1 and h2, is significant. Therefore, it can be concluded that monitoring data is very important
since the updated model can differ significantly from the nominal model. Consequently monitoring data makes a difference
in the estimation of the system reliability.
5.2. Application no. 2: a control design strategy

5.2.1. Nominal system
The objective of this example is to evaluate the effect of the additional information gained about the structure from mea-

sured data on the performance of a passive energy dissipation system. For this purpose, the two-story reinforced concrete
structure under earthquake loading shown in Figs. 8 and 9 is considered. Forty-eight columns of square cross section support
each floor. The dimension of the columns are equal to 0.57 m and 0.53 m for the first and second floor, respectively. Both
floors have a constant height of 3.0 m. The mass of each floor is equal to 1260 ton. The behavior of the reinforced concrete
structure is characterized by considering a Young’s modulus equal to E ¼ 2:5� 1010 N/m2 and Poisson ratio m ¼ 0:3. This
model may be interpreted as the structural model obtained during the design phase. The structure is excited horizontally
by a ground acceleration applied at 45	 with respect to the x axis. The induced ground acceleration is modeled as described



Table 5
Summary of numerical efforts associated with the identification process and the estimation of the updated
failure probability.

Type of process Number of model evaluations

Case I Case II Case III

Identification 4000 7000 7000
Failure probabilitya 3800 3800 3800
Failure probabilityb 2900 2900 2900

a Acceptance option activated.
b Acceptance option not-activated.

Table 6
Effect of monitoring data on the updated failure probability for different nominal systems. Case III
(global identifiable case)

Parameters Failure probability

Nominal system Updated system

h1 ¼ 1:00; h2 ¼ 1:00 1:0� 10�4 3:9� 10�2

h1 ¼ 0:95; h2 ¼ 0:95 1:0� 10�4 2:3� 10�2

h1 ¼ 0:90; h2 ¼ 0:90 1:0� 10�4 1:3� 10�2

h1 ¼ 0:85; h2 ¼ 0:85 1:0� 10�4 8:6� 10�3

h1 ¼ 0:80; h2 ¼ 0:80 1:0� 10�4 1:2� 10�3

h1 ¼ 0:75; h2 ¼ 0:75 1:0� 10�4 5:8� 10�4

h1 ¼ 0:70; h2 ¼ 0:70 1:0� 10�4 1:1� 10�4
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in the following section. For an improved earthquake performance the structure is reinforced with friction hysteretic devices
at each floor. The devices follow the restoring force law
rðtÞ ¼ kd dðtÞ � c1ðtÞ þ c2ðtÞ
� �

; ð30Þ
where kd denotes the stiffness of the device, dðtÞ is the relative displacement between floors, and c1ðtÞ and c2ðtÞ denote the
plastic elongations of the friction device. Using the supplementary variable sðtÞ ¼ dðtÞ � c1ðtÞ þ c2ðtÞ, the plastic elongations
are specified by the nonlinear differential equations [45]
_c1ðtÞ ¼ _dðtÞHð _dðtÞÞ HðsðtÞ � syÞ
sðtÞ � sy

sp � sy
Hðsp � sðtÞÞ þ HðsðtÞ � spÞ

� �
;

_c2ðtÞ ¼ � _dðtÞHð� _dðtÞÞ Hð�sðtÞ � syÞ
�sðtÞ � sy

sp � sy
Hðsp þ sðtÞÞ þ Hð�sðtÞ � spÞ

� �
; ð31Þ
Device

Device

Fig. 8. Isometric view of the structural model.
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where Hð�Þ denotes the Heaviside step function, sy is a parameter specifying the onset of yielding, and kd sp is the maximum
restoring force of the friction device. The values sp ¼ 0:006 m and sy ¼ 0:0042 m are used in this case. Because of the yielding,
energy dissipation due to hysteresis is introduced in the structural response.
5.2.2. Excitation model
The ground acceleration is modeled as a non-stationary stochastic process. In particular, a point-source model character-

ized by the moment magnitude M and epicentral distance r is considered here [46,47]. The model is a simple, yet powerful
means for simulating ground motions and it has been successfully applied in the context of earthquake engineering. The
time-history of the ground acceleration for a given magnitude M and epicentral distance r is obtained by generating first
a discrete-time white noise sequence xðtjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=Dt

p
zj; j ¼ 1; . . . ;nz, where zj; j ¼ 1; . . . ;nz, are independent, identically dis-

tributed standard Gaussian random variables, Dt is the sampling interval, and nz is the number of time instants equal to the
duration of the excitation T divided by the sampling interval. The sampling interval and the duration of the excitation are
taken equal to Dt ¼ 0:01 (s) and T ¼ 20:0 (s), respectively in this case. Then, the discrete-time Gaussian white noise sequence
needed in the excitation model involves 2000 random variables. The white noise sequence is then modulated by an envelope
function hðt;M; rÞ at the discrete time instants. The modulated white noise sequence is transformed to the frequency domain
by applying the discrete Fourier transform. The resulting spectrum is normalized by the square root of the average square
amplitude spectrum. The normalized spectrum is then multiplied by a ground motion spectrum Sðf ;M; rÞ at discrete frequen-
cies fl ¼ l=T; l ¼ 1; . . . ;nz=2. Finally, discrete inverse Fourier transform is applied to transform the sequence back to the time
domain to yield the desired ground acceleration time history. The particular values of the moment magnitude and epicentral
distance used in this example are M ¼ 7(dyn-cm) and r ¼ 15 (km), respectively. For illustration purposes Fig. 10 shows a typ-
ical envelope function and ground motion spectrum and a corresponding sample of ground motion. Details of the character-
ization of the envelope function hðt;M; rÞ and the ground acceleration spectrum Sðf ;M; rÞ can be found in [46–49].
5.2.3. Updated system
For identification purposes, the following model class M is considered. It is assumed that each floor may be represented as

rigid within the x–y plane when compared with the flexibility of the columns. Hence, each floor is represented by three de-
grees of freedom, i.e., two translatory displacements in the direction of the x and y axis, and a rotational displacement. Due to
modeling errors the rigidities of the actual class of models are parameterized as: EI1x ¼ h1E�I1x; EI2x ¼ h2E�I2x; EI1y ¼ h3E�I1y, and
EI2y ¼ h4E�I2y, where �Iix and �Iiy; i ¼ 1;2 represent the nominal moment of inertia of the columns of the i floor in the x and y
direction, respectively. These nominal values correspond to the columns of the nominal system previously described. On
the other hand, the damping ratios for the vibrational modes are identical and parameterized as f ¼ h5

�f where �f is the nom-
inal value and equal to 3%. As in the previous example simulated measured data are used for the identification process. For
illustration purposes the actual structure used to generate the measured data corresponds to a finite element model with
about 5000 degrees of freedom, which includes beam, column and shell elements. The moment of inertia of the columns
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are defined in terms of the nominal properties as: I1x ¼ 0:8�I1x; I2x ¼ 0:9�I2x; I1y ¼ 0:9�I1y, and I2y ¼ 0:95�I2y. On the other hand,
the actual damping ratios for the vibrational modes that contribute significantly to the response are identical and equal
to 1:2�f. Note that the actual structure does not correspond to any model in the class of models considered. This actual
structure may correspond to the structural system already built where changes in the stiffness and damping properties have
occurred due to, for example, large response levels. The input ground acceleration history is taken as the one shown in Fig. 2
applied at 45	 with respect to the x axis. The measured response is simulated by first calculating the absolute acceleration
response of the actual structure at the first and second floor (in the x and y direction) and then adding 15% rms Gaussian
white noise. The responses are computed at the center of mass of each floor.

Thirty seconds of data with sampling interval Dt ¼ 0:01 s were used, given a total of Nt ¼ 3000 data points. Independent
uniform prior distributions are assumed for the parameters h1; h2; h3; h4, and h5 over the ranges ½0:5;1:5� and [0:9;1:4� respec-
tively. The transitional Markov chain Monte Carlo method with Nj ¼ 1000; j ¼ 1; . . . ;m is implemented for the identification
process. The scaling parameters b and j are taken as 0.04 in this application problem. The four components of the samples
corresponding to the rigidity parameters are shown in Fig. 11 in two groups: h1 versus h2 and h3 versus h4. The values of the
parameters of the nominal system are also indicated in the figure.

The posterior samples are concentrated around the reference values ð0:8;0:9Þ and ð0:9; 0:95Þ, respectively, leading to a
relatively peaked posterior probability density function. Recall that the reference values correspond to the model used to
generate the measure data (actual structure). From Fig. 11 it is also observed that the data is strongly correlated along certain
directions in the parameter space. Actually, there is a line of maximum likelihood estimates in the vicinity of the reference
values in the h1 � h2 and h3 � h4 spaces. Note that the lines have negative slopes, which is reasonable since for example an
increase in the stiffness of the first floor in the x direction is compensated by a decrease in the stiffness of the second floor in
the x direction during the updating process. In other words, all points along that direction correspond to structural models
that have almost the same response at the measured degrees of freedom. On the other hand, the histogram of the damping
parameter shown in Fig. 12 indicates that the initial uncertainty about this parameter (interval ½0:9;1:4�) can be updated,
which is deduced by the fact that the posterior samples are concentrated in a smaller range if compared with the prior
samples. The updating procedure revels that the values in the range ½1:15;1:35� with a concentration around 1.2 are more
plausible based on the prior knowledge and on the data. The number of model evaluations required for performing the
identification process is equal to 10000 in this case.

5.2.4. System performance
To evaluate the performance of the structural system the following failure domain is considered
FðMÞ ¼ qT ¼< zT ; hT > jdðqjMÞ ¼maxj¼1;2 maxt2½0;T�f
jrjxðt; z; hÞj

r�x
;
jrjyðt; z; hÞj

r�y
g > 1

( )
; ð32Þ
where q represents the augmented vector of system parameters, rjxðt; z; hÞ and rjyðt; z; hÞ represent the relative displacement
between the ðj� 1; jÞth floor in the x and y direction, respectively, and r�x and r�y are the corresponding threshold levels. The
critical response levels are calibrated such that the probability of failure of the reinforced nominal system is equal to 10�4. As
in the previous application problem the estimation of the failure probabilities represents a high-dimensional reliability
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0.9 1 1.1 1.2 1.3 1.4
0

100

200

300

400

500

600

700

800

900

1000

θ5

Fr
eq

ue
nc

y

Posterior
Nominal

Fig. 12. Histogram of the damping parameter obtained by the transitional Markov chain Monte Carlo method.

H.A. Jensen et al. / Comput. Methods Appl. Mech. Engrg. 267 (2013) 293–317 309
problem (more than two thousand random variables are involved in the corresponding multidimensional probability inte-
grals in this case). For calibration purposes the initial stiffness of the hysteretic devices is set equal to kd ¼ 10� �kd, where �kd

is a percentage of the stiffness of the first floor in the x direction (1% in this case). Fig. 13 shows the failure probability of the
nominal, updated most probable and updated models in terms of the initial stiffness of the nonlinear devices. The updated
most probable model is defined in terms of the mean value of the parameters obtained at the last stage of the transitional
Markov chain Monte Carlo method. Thus, this model does not involve parameter uncertainties. In addition, the curve ob-
tained by taking into account prior uncertainties is also included in the figure. To be consistent with the Bayesian model
updating considered before, independent uniform distributions are assumed for the prior distributions. Of course, other dis-
tributions can be considered as well. For example prior uncertainties can be quantified by Gaussian models with mean values
equal to the nominal values of the model parameters and uncertainties assigned by user-specified covariance matrices. The
updated robust probability of failure is computed by the proposed strategy while the probability of the other models are esti-
mated by direct subset simulation. The same properties are assumed for the devices placed in the first and second floor. A
range between 0 and 20� �kd is considered in the figure. Note that zero initial stiffness corresponds to the linear model, i.e.,
the structural system without the hysteretic devices. It is observed that the probability of failure decreases as the initial stiff-
ness of the nonlinear devices increases for all cases. This is reasonable since the structural model becomes stiffer when the
initial stiffness increases and at the same time the devices introduce additional energy dissipation capacity to the structural
system. In this regard, the use of friction hysteretic devices constitutes an effective control strategy.
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Comparison of the curves obtained by the updated most probable model and the nominal system demonstrates the effect
of monitoring data on the system failure probability. The failure probability of the updated most probable model is signif-
icantly larger than the corresponding to the nominal system. For example, if a probability of failure equal to 10�3 is imposed
as a design requirement the initial stiffness of the devices required in the nominal system is approximately 7� �kd while de-
vices with initial stiffness equal to 13� �kd are required for the updated most probable system. In other words, the updated
most probable structural model reinforced with the devices used in the nominal system is not feasible under the prescribed
reliability requirement since the failure probability would be close to 10�2 (see Fig. 13). Then, the reliability of the structural
system computed before and after using dynamic data can differ significantly. It is noted that the numerical efforts involved
in the estimation of the updated failure probability depend on the level of reliability. In fact the number of model evaluations
is given in terms of the number of conditional levels required by the proposed strategy and the number of samples used at
each level. The number of analyses involved in the estimation of the updated failure probabilities shown in Fig. 13 varies
between 2000 and 7400, depending on the value of the failure probability.
5.2.5. Effect of parameter uncertainty
The effect of parameter uncertainty on the robust failure probability is illustrated by comparing the curves obtained by

the updated model and the one that considers prior uncertainties. In general, the uncertainties tend to increase the robust
probability of failure. In fact, it is observed from Fig. 13 that the values of the curve corresponding to the prior robust failure
probability are larger than the ones for the updated robust failure probability. One of the reasons of this difference is the fact
that the posterior samples (see Fig. 11) are concentrated in a smaller range if compared with the prior samples (uniformly
distributed in the entire range). Consequently, the posterior robust failure probability decreases with respect to the prior
robust failure probability. The difference is more than one order of magnitude for the range of initial stiffness of the nonlin-
ear devices considered. Thus, the effect of the additional information gained about the structure from measured data on the
performance of the structural system is considerable.

The effect of parameter uncertainty on the performance of the proposed control strategy can also be seen in Figs. 14 and
15. In these figures, the iso-probability curves corresponding to the system with prior uncertainties and the updated system
in terms of the initial stiffnesses of the devices placed in the first and second floor are presented, respectively. Note that the
devices placed in the first and second floor may have different properties in this case. The distribution of the iso-probability
curves is quite different for these two systems. It is observed that the iso-probability curves corresponding to the updated
system are essentially the curves of the system with prior uncertainties shifted towards the lower section of the stiffness
parameters space. In fact, in order to obtain the same level of reliability, the stiffness of the devices placed in the system with
prior uncertainties should be greater than the ones used in the updated system. For example, devices with initial stiffness
close to 2� �kd in both floors are associated with a probability of failure equal to 3:0� 10�2 for the updated system (point
marked in Fig. 15). Contrarily, devices with initial stiffness close to 15� �kd in both floors (point marked in Fig. 14) give
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the same level of reliability for the system with prior uncertainties. Then, the effectiveness of the hysteretic devices changes
dramatically due to the additional information gained about the system from measured data. Therefore, the resulting mod-
eling uncertainties makes a difference in the performance evaluation of the passive energy dissipation system.

5.3. Application no. 3: base-isolation system performance

5.3.1. Structural model
The three-dimensional reinforced concrete building model with a base isolation system shown in Fig. 16 is considered for

analysis. Material properties of the reinforced concrete structure have been assumed as follows: Young’s modulus
E ¼ 2:5� 1010 N/m2; and Poisson ratio m ¼ 0:2. The total mass of the first and second floor is 7:0� 105 kg, and
6:0� 105 kg, respectively. On the other hand, the total mass of the platform is equal to 6:0� 105 kg. The height of each floor
is 3.5 m and the diaphragms are modeled with shell elements with a thickness of 0.25 m. Additionally, beam and column
elements are used in the finite element model, which has a total of 7000 degrees of freedom. A 5% of critical damping is
added to the first modes of the superstructure. For anti-seismic design purposes the superstructure is equipped with a total
number of 20 rubber bearings in its isolation system. These devices consists of layers of rubber and steel, with the rubber
being vulcanized to the steel plates. Fig. 17 shows a schematic representation of a rubber bearing, where De represents
the external diameter of the isolator, Di indicates the internal diameter, Hr ¼ trnr is the total height of rubber in the device,
tr is the layer thickness and nr is the number of rubber layers. The nominal values of the isolator parameters are set equal to
�De ¼ 0:85 m, �Hr ¼ 0:17 m, and �Di ¼ 0:10 m. The force displacement characteristics of the isolator elements are modeled by a
biaxial hysteretic behavior. An analytical model based on a series of experimental tests is used in the present application. A
brief description of the model is provided in a subsequent section.

5.3.2. Structural response
The structural system is excited by a ground acceleration in the x direction. The excitation is modeled as in the previous

application (see Application no. 2). The response of the base-isolated structural system is obtained from the solution of the
equation of motion that characterizes the model. The equation of motion of the superstructure can be expressed in the form
F

Ms€xsðtÞ þ Cs _xsðtÞ þ KsxsðtÞ ¼ �MsGsð€xbðtÞ þ €xgðtÞÞ; ð33Þ
where xsðtÞ is the vector of relative displacements with respect to the base, xbðtÞ is the vector of base displacements, €xgðtÞ is
the excitation vector, and Ms;Cs;Ks, and Gs are the corresponding mass, damping, stiffness and earthquake influence coeffi-
cients matrices, respectively. On the other hand, the equation of motion of the base platform can be written as
ðGT
s MsGs þMbÞð€xbðtÞ þ €xgðtÞÞ þ GT

s Ms€xsðtÞ þ Cb _xbðtÞ þ KbxbðtÞ þ f isðtÞ ¼ 0; ð34Þ
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Fig. 16. Building model with base isolation system.
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where Mb is the mass matrix of the rigid base, Cb is the resultant damping matrix of viscous isolation components, Kb is the
resultant stiffness matrix of elastic isolation components, and f isðtÞ is the vector containing the non-linear isolation element
forces. In the previous equations it has been assumed that the superstructure remains elastic and the base platform is rigid in
plane. Rewriting the previous equations, the combined equation of motion of the base-isolated structural system can be for-
mulated in the form
Ms MsGs

GT
s Ms Mb þ GT

s MsGs

� �
€xsðtÞ
€xbðtÞ

� �
þ

Cs O
O Cb

� �
_xsðtÞ
_xbðtÞ

� �
þ

Ks O
O Kb

� �
xsðtÞ
xbðtÞ

� �
¼ �

MsGs

Mb þ GT
s MsGs

� �
€xgðtÞ �

0
f isðtÞ

� �
:

ð35Þ



Fig. 17. Schematic representation of a rubber bearing.
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Note that the combined equation of motion (superstructure and isolation system) constitutes a nonlinear system of equa-
tions due to the nonlinearity of the isolation forces (see next Section). The solution of the equation of motion (35) is obtained
in an iterative manner by using any suitable step-by-step nonlinear integration scheme. From the numerical implementation
point of view the diaphragms in the finite element model are assumed to be rigid in plane. Then using kinematic relation-
ships and condensation techniques nine master degrees of freedom are finally defined, which are the ones used in the dy-
namic analysis.

5.3.3. Isolation system model class
An analytical model that simulates measured restoring forces under bidirectional loadings is used in the present appli-

cation. The model is based on a series of experimental tests conducted for real-sized rubber bearings [50]. On the basis of
the test results the model assumes that the restoring force on the rubber bearing is composed of a force directed to the origin
of the isolator and another force approximately opposite to the direction of the movement of the isolator. The direction of the
movement dðtÞ is defined in terms of the base displacement vector xðtÞ (components in the x and y direction of xbðtÞ) by
means of the nonlinear differential equation [50]
_dðtÞ ¼ 1
a
k _xðtÞk _̂xðtÞ � kdðtÞknd̂ðtÞ

h i
; xð0Þ ¼ 0; dð0Þ ¼ 0; ð36Þ
where _xðtÞ is the velocity vector, _̂xðtÞ and d̂ðtÞ are the unit directional vectors of _xðtÞ and dðtÞ, respectively, and k � k indicates
the Euclidean norm. The parameters a and n are positive constants that relate to the yield displacement and smoothness of
yielding, respectively. Once the vector dðtÞ has been derived, the restoring force on each of the isolators is expressed in terms
of the unit directional vector x̂ðtÞ and the vector dðtÞ as fðtÞ ¼ �x̂ðtÞfeðtÞ � dðtÞfsðtÞ, where feðtÞ is the non-linear elastic com-
ponent and fsðtÞ is the elastoplastic component. Based on experimental results, the non-linear elastic component can be
approximated as feðtÞ ¼ A s2ðcðtÞÞ, where A ¼ p=4ðD2

e � D2
i Þ is the cross sectional area of the rubber and s2ð�Þ is a quadratic

polynomial in terms of the average shear stress cðtÞ ¼ kxðtÞk=Hr . On the other hand, the elastoplastic-plastic component
can be expressed as fsðtÞ ¼ A s3ðcðtÞÞ where s3ð�Þ is a cubic polynomial in terms of the average shear stress cðtÞ [50,51]. Sim-
ilarly, the parameters a and n can be calibrated from the experimental data. The estimated values are a ¼ 0:25Hr and n ¼ 0:7.
Validation calculations have shown that the analytical model is able to accurately simulate the test results for both bidirec-
tional and unidirectional loading [50]. Based on the previous analytical model, the isolation system model class is defined in
terms of the external diameter of the isolator and the total height of rubber in the device. These parameters are parameter-
ized as De ¼ h1

�De and Hr ¼ h2
�Hr , where �De and �Hr are the corresponding nominal values.

5.3.4. Identification of isolator parameters
As in the previous applications, it is assumed that the base-isolated structural system is built and response data are avail-

able to update the isolation model. The model updating is based on measurements of the ground acceleration at the support
of the isolation system and of the absolute acceleration response in the x direction at the base platform. The actual base-iso-
lated system used to generate the simulated measured data corresponds to the structural model previously described with
isolator parameters De ¼ 0:75 m, Hr ¼ 0:20 m, and Di ¼ 0:10 m. This isolation system is more flexible than the nominal one
indicating that the isolator properties have changed due to, for example, large shear strains developed in the devices during a
severe earthquake. The input ground acceleration history, applied in the x axis, is taken as the one shown in Fig. 2. The mea-
sured response is simulated by first calculating the absolute base acceleration response and then adding 10% rms Gaussian
white noise. Thirty seconds of data with sampling interval Dt ¼ 0:01 s are used, given a total of Nt ¼ 3000 data points. For
illustration purposes Fig. 18 shows a typical displacement-restoring force curve of one of the isolators. The nonlinear incur-
sion is clear from the figure.

For the identification process independent uniform prior distributions are assumed for the parameters h1 and h2 over the
range ½0:7;1:5�. Note that these parameters affect the nonlinear behavior of the isolators. Therefore the identification process
in this case is related to parameters that control the nonlinear response of the isolation system. The number of samples at the
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different iteration steps of the transitional Markov chain Monte Carlo method is taken as 1000, that is Nj ¼ 1000; j ¼ 1; . . . ;m,
while the scaling parameters are equal to 0.04. The samples from the prior and the posterior probability density functions are
displayed in terms of the parameters h1 and h2 in Fig. 19A and B, respectively. The value of the nominal model parameters is
also indicated in the figure. In this application the number of model evaluations required for performing the identification
process is equal to 6000. The large prior uncertainty about the isolator parameters (De;Hr) is reduced which is visible from
the decreased range of the posterior samples. The samples of the external diameter are distributed around the actual value of
0.75 m (h1 ¼ 0:89) as shown in the corresponding histogram of this parameter (Fig. 20). On the other hand, it is observed
from Fig. 19B that the total height of rubber in the device is essentially unidentifiable to a unique value with the provided
data. This result is reasonable since numerical validations have shown that the response of the base platform is relatively
insensitive to this parameter over the range considered (12 cm 6 Hr 6 25 cm) [51]. Thus, no unique solution can be identi-
fied in this case. The results of Fig. 19B also suggest that the data for the updated model result in uncertainties that are cor-
related along a certain direction. The correlation structure is consistent with the fact that the base isolation system becomes
stiffer as the rubber diameter is increased. Contrarily, the isolation system becomes more flexible as the height of the rubber
is increased. Therefore, an increase in the rubber diameter is compensated by an increase in the height of the rubber during
the updating process, and all points along that direction correspond to isolation system models that have similar base drift
responses. The previous results illustrate some of the advantages of Bayesian updating procedures over traditional tech-
niques that try to identify one best model when there is limited amount of data available. In this case the identification prob-
lem emerges as ill-conditioned without a unique solution which can be tackled very efficiently by Bayesian model updating.
5.3.5. Base-isolation performance
The performance of the base isolation system is evaluated in terms of the probability of a failure event associated with the

base drift response. This response together with the interstory drifts and absolute accelerations of the superstructure are
usually the quantities to be controlled during the design of base-isolation systems. The failure domain related to the base
drift is defined as
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FðMÞ ¼ qT ¼< zT ; hT > jdðqjMÞ ¼maxt2½0;T�
jxbx ðt; z; hÞj

x�bx

> 1

( )
; ð37Þ
where q represents the augmented vector of system parameters, xbx ðt; z; hÞ represents the base displacement in the x direc-
tion, and x�bx

¼ 25 cm is the corresponding threshold level. In what follows the effect of monitoring data and parametric
uncertainty on the reliability of the isolation system is considered. To this end the probability of failure of the nominal
and updated systems are compared. Recall that the nominal system may be considered as the pre-test model used in the
design stage of the isolation system. As in the previous application problems the estimation of the failure probabilities rep-
resents a high-dimensional reliability problem.
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The failure probability of the nominal and updated systems in terms of the moment magnitude M is shown in Fig. 21. A
range between 7.0 and 8.0 is considered for moment magnitude. The epicentral distance is fixed at 15 km. It is seen that the
probability of failure increases for both systems as the moment magnitude increases as expected. On the other hand, the
failure probability of the nominal and updated systems in terms of the epicentral distance r is presented in Fig. 22. In this
case the moment magnitude is fixed at 7.2 and a range between 5.0 km and 30 km is considered for the epicentral distance.
As anticipated, the probability of failure decreases for both systems as the epicentral distance increases. From these figures it
is observed that the failure probability of the updated system (updated robust failure probability) is larger than the corre-
sponding to the nominal system. It is also seen that the difference is significant in some cases (more than one order of mag-
nitude). The differences are caused by the uncertainties in the model parameters inferred from the test data by the Bayesian
formulation and from the fact that the isolation devices in the updated model are more flexible. The number of analyses in-
volved in the estimation of the updated failure probabilities shown in Figs. 21 and 22 varies between 2000 and 11,000,
depending on the value of the failure probability. The previous results show, once again, the importance of using dynamic
data, whenever available, in order to obtain a more accurate picture of the system performance.

6. Conclusion

The use of updated robust reliability measures in the context of stochastic structural dynamical systems has been
explored. A simulation-based Bayesian framework for system identification is used to update the structural models using
dynamic response data. The updated distribution of the system model parameters is then used to implement a methodology
for estimating the system reliability which incorporates knowledge from the test data. The estimates obtained by the pro-
posed scheme are similar to the ones obtained directly from the samples generated during the identification process. How-
ever, the proposed implementation reduces the computational cost by one or two orders of magnitude. Numerical results
show that the structural reliability computed before and after using dynamic data can differ significantly. In fact, monitoring
data and the resulting modeling uncertainties makes an important difference in the performance evaluation and design of
structural systems. Therefore, measured responses, whenever available, should be used. In this manner a more accurate
description of the system performance and reliability can be obtained. Future research efforts aim at expanding the study
reported herein. Specific issues to be investigated include: the application of the proposed implementation to larger FE mod-
els and more general nonlinear models; the parallelization of the updating reliability scheme; and the implementation of
surrogate approximation schemes for evaluating system responses in the context of dynamical systems under stochastic
excitation.
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